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Reaction in a scalar mixing layer in grid-generated turbulence is studied 
experimentally by doping half of the flow with nitric oxide and the other half with 
ozone. The flow conditions and concentrations are such that the chemical reaction is 
passive and the flow and chemical timescales are of the same order. Conserved scalar 
theory for such flows is outlined and further developed; it is used as a basis for 
presentation of the experimental results. Continuous measurements of concentration 
are limited in their spatial and temporal resolution but capture sufficient of their 
spectra for adequate second-order correlations to be made. Two components of 
velocity have been measured simultaneously with hot-wire anemometry. Conserved 
scalar mixing results, deduced from reacting and non-reacting measurements of 
concentration, show the independence of concentration level and concentration ratio 
expected for passive reacting flow. The results are subject to several limitations due 
to the necessary experimental compromises, but they agree generally with 
measurements made in thermal mixing layers. Reactive scalar statistics are 
consistent with the realizability constraints obtainable from conserved scalar theory 
where such constraints apply, and otherwise are generally found to lie between the 
conserved scalar theory limits for frozen and very fast chemistry. It is suggested that 
Toor’s (1969) closure for the mean chemical reaction rate could be improved by 
interpolating between the frozen and equilibrium values for the covariance. The 
turbulent fluxes of the reactive scalars are found to approximately obey the gradient 
model but the value of the diffusivity is found to depend on the Damkohler number. 

1. Introduction 
The turbulent flow behind a grid, which has at  some upstream location a step 

change in temperature in the direction transverse to the mean flow direction, has 
been termed the thermal mixing layer. It has been studied experimentally by Watt 
& Baines (1973)’ Keffer, 01sen & Kawall (1977), LaRue & Libby (1981), LaRue, 
Libby & Seshadri (1981), Ma & Warhaft (1986) and Gibson, Jones & Kanellopoulos 
(1989), and theoretically by Libby (1975), Durbin (1980), Wu & O’Brien (1982), 
Lumley (1986) and Gibson et al. (1989). Durbin’s stochastic model is presented in 
terms of species concentrations, but since heat and species are transported in a 
similar fashion in a turbulent flow at low Mach number the problem is analogous. We 
can speak in general terms of a scalar mixing layer. For small temperature differences 
and dilute species, variations in the fluid density and viscosity will be small and the 
effect of the scalars on the flow can be negligible. The scalars are then said to be 
passive. Study of the passive scalar mixing layer will help to elucidate many aspects 

t Present address: Division of Hydro and Gas Dynamics, NTH, University of Trondheim, 
Norway. 



212 R.  W .  Bilger, L .  R .  Saetran and L.  V.  Krishnamoorthy 

of turbulent mixing. Here we address the effects of chemical reaction. Hsieh & 
O’Brien (1986) give modelling results for low rates of reaction. 

The study of turbulent reacting flows is important in many engineering, 
geophysical and biological contexts, e.g. combustion chambers for engines and 
furnaces ; chemical reactors ; dispersion in the atmosphere, oceans, lakes and rivers ; 
and biological processes in aquatic environments. Turbulent mixing processes lead to 
large fluctuations in scalar quantities such as temperature and species concentrations. 
Rates of reaction are usually nonlinear functions of these scalar quantities and their 
mean rates of reaction are not simply expressible in terms of the mean values of the 
scalars (Toor 1969 ; Donaldson & Hilst 1972). Scalar correlations play a significant 
role. The turbulence can thus significantly affect the rates of reaction. Indeed it is 
found for fast reactions that the rate of reaction is controlled by the rate of mixing 
produced by the turbulence. Reaction may also affect turbulent transport. Models 
for turbulent transport, such as the gradient transport model, which are found to be 
useful for non-reactive scalars, can be significantly altered for reactive scalars. It has 
been found (Moss 1980) that transport up the mean gradient, rather than down the 
mean gradient can occur. Libby & Bray (1981) attribute such ‘countergradient ’ 
transport to  dynamical processes associated with density fluctuations and mean 
pressure gradients. Effects are possible in passive reacting flow (Seinfeld 1975 ; Lamb 
1976) and need clarification. Hill (1976), Libby & Williams (1980) and Bilger (1989) 
are useful entries into the literature on turbulent reacting flows. 

We study here the reaction between two chemical species A and B which are 
initially in separate streams, that is they are non-premixed. Of particular interest is 
the effect of the relative rates of chemical reaction and mixing (expressible in terms 
of a Damkohler number, ND) on the reactive species statistics (means, variance, 
covariances, etc.), the mean chemical rate, and the modelling of scalar transport. The 
reactants are assumed to  undergo a second-order irreversible reaction. The 
concentrations of the reactants in the inlet streams is assumed to be spatially 
uniform and constant in time. The theory for such two-stream mixing problems with 
chemical reaction and turbulent flow is well developed for the special case of equal 
molecular diffusivities for all the scalars. Limiting cases of fast chemistry (ND -+ 00)  

and slow chemistry (N,, + 0)  are identified and have solutions expressible in terms of 
the statistics of non-reactive scalars in the flow. For finite Damkohler number results 
are obtained which limit the range of reactive scalar statistical quantities. The 
theory makes use of linear combinations of the reactive scalars which are defined 
such that they have no chemical source term. Results for this ‘conserved scalar’ 
theory are briefly derived and presented here as a basis for discussion of the 
experimental results. In  general they are applicable to all two-stream mixing 
problems and do not involve modelling assumptions. 

Experiments have been carried out in a large slowly moving turbulent grid flow 
using the reaction between nitric oxide and ozone which are mixed at parts per 
million (p.p.m.) levels in air. The experimental conditions are such that the 
Damkohler number can be varied around values of the order of unity so that the 
rates of mixing and chemical reaction are comparable. The aim has been to get 
measurements of the reactant species which are sufficiently resolved spatially and 
temporally so that errors in their statistics will not be large. Although the 
diffusivities of the nitric oxide and ozone are not identical i t  is surmised that 
differential diffusion effects may not be large at moderate to high Reynolds numbers 
so that comparison with the conserved scalar theory may be useful. The 
measurements have been made in the near-field region of the grid flow, 12-21 mesh 
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widths downstream from the grid. Furthermore, the overall width of the flow is only 
8 mesh widths, four per side, thus stretching the notation of grid turbulence to an 
extreme. The turbulence in this region is not fully developed. The design of the 
experiment represents a compromise between the desire for high Reynolds numbers, 
large distance downstream, Damkohler numbers in the range near unity, degree of 
spatial resolution and cost of construction and operation. Currently, no better source 
of experimental data exists and the results obtained appear to be basically valid. The 
measurements include two channels of hot-wire anemometry so that correlations 
with reactive species are obtained yielding the turbulent fluxes directly. Saetran et 
a l .  (1989) have presented some of the results for the first and second moments of the 
scalars. These are included here for completeness and to correct an error in figure 7 
of that article. 

2. Conserved scalar theory 
A schematic of the reactive scalar mixing layer is shown in figure 1. Stream 1 

contains reactant A at the uniform and constant composition r,, and zero of 
reactant B. Stream 2 contains reactant B at the uniform and constant composition 
rB2 and zero of reactant A .  This is a two-stream mixing problem with reaction. 
Conserved scalar theory for such problems is quite well developed in the literature 
(see e.g. Lin & O’Brien 1974; Bilger 1976a, Libby & Williams 1980). We recapitulate 
the development of the theory here, partly for completeness and ready accessibility 
of the results, but also to introduce some new findings. 

All species are assumed dilute so that the density and other fluid properties are 
constant throughout the flow and the diffusion of the species is assumed to be Fickian 
with equal diffusivities so that they obey the conservation equation 

(1) qr,) = -+ art v.vr,-v. (mr,) = w,. 
at 

Here ri = Ti(x, t )  is the mole fraction of species i ,  wi its reaction rate per unit total 
moles, 9 the molecular diffusivity, U the velocity vector, t time and V the spatial 
derivative operator. The species A and B are assumed to undergo an irreversible 
second-order chemical reaction to form the product P ,  the stoichiometric coefficients 
being here assumed (without loss of generality) to be unity: 

A + B + P ,  

so that wA = wB = -wp = -wArB. (2) 
Conserved scalars B(”(x,t)  may be defined such that they have zero chemical 

source term, e.g. 

p, = rA-rB; = rA+rp; p = rB+rp. (3) 

q3(’)) = 0, (4) 

Such conserved scalars obey the conservation equation 

where 9 is the operator defined by the left-hand side of (1). This is the conservation 
equation that applies to non-reactive flow and to non-reactive species in a reactive 
flow. It also applies to temperature in low-Mach-number flows with negligible heat 
release. Dropping the identifying superscript (j) for clarity we have for all such 
conserved and non-reactive scalars with similar boundary conditions 

9 ( P )  = 0, (5 )  



214 R. W. Bilger, L.  R .  Saetran and L. V.  Krishnamoorthy 

Stream 2 I \ 

/ ___L 

f. =r-. 
Turbulence 
grid 

FIGURE 1. Schematic diagram of the reactive-scalar mixing layer. 

with /3 = 1 in stream 1, p = 0 in stream 2, 

where a = ( P - / 3 2 ) / ( / 3 1 - P 2 ) .  (6) 

PCX, t )  = F ( x ,  t )  

It follows (Lin & O’Brien 1974; Bilger 19763) that all the a must be identical so that 

(7 ) 

and F is called the mixture fraction. It has limits of 0 and 1, its palues in streams 2 
and 1 respectively. Since the scalars are passive the statistics of /3 and hence of F are 
the same in all realizations of the flow, with or without any particular reactant, they 
will be the same as that for temperature in a thermal mixing layer, assuming that the 
thermal diffusivity is equal to the species diffusivity and the boundary conditions are 
the same. 

We have from f l  in (3), and (6) and (7) 

r A  - r B  = F( rA + r B z )  - rBs) 

rA + r, = ~ r ~ ~ ,  
rB+rp = ( 1 - q  rBz. ( 8 4  

(8a) 

(8b) 

These results apply for all Damkohler numbers. Using the grid mesh width M and the 
mean velocity 0 to non-dimensionalize (1) we have 
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This definition for the Damkohler number, N,,, will give values which are low 
compared with definitions based on the advective timescale (x /O)  or the turbulence 
timescale ( % M/u' ) ,  where u' is the r.m.s. axial velocity fluctuation of the streamwise 
velocity. 

It is seen that for N,+O, (9a,  b)  become 

with solutions linearly related to that of F yielding 

lim r, = = F r A l ,  lim rB = 2-g = ( l - F ) r B s .  (12a, b )  
ND+O ND+O 

These are the so-called frozen flow limits. It can be seen that (12a) is also obtained 
when $ = 0, i.e. when rBz = 0, and (12b) is also obtained when $ = 1, i.e. when 
rAl = 0. When N,,+ ao, for finiteness of the right-hand side of (9) we must have 

f A  f B  = 0, 

which implies that either rA = 0 or r B  = 0 or both are zero together. With the 
constraint of (8) this yields the so-called equilibrium flow limits to the solution 

lim r A  = PA = (T'Al+I'Bx)(F-Fs)H(F-Fs), 

lim r B  = PB = ( I 'Al+rBx)(Fs-F)H(Fs-F) ,  

( 1 3 4  

(13b)  

where H ( z )  is the Heaviside unit step function with value zero for z < 0 and value 
unity for z > 0. The stoichiometric value of the mixture fraction, Fs, is given by 
setting both rA and rB equal to zero in (8): 

ND+CC 

ND+m 

The frozen and equilibrium limits are bounds for finite Damkohler number 

r: 2 r, 2 r;, rg 2 rB 2 r;. (15) 

This can be proved by using (8) ,  (12), (13) and (14) to show that 

r;-rA = r;-rB = r,, 
and rA-PA = rB-PB = r A H ( F s - F ) + f B H ( F - F s )  

and noting that no mole fraction can be negative. These represent a constraint on 
experimental measurements the violation of which must be explained in terms of 
differential diffusion or experimental error. 

The probability density function of F ,  p,(F),  is defined for every point in the 
flow (or every point and time in an ensemble of non-stationary flows) such that 
p,(F; x) dF is the probability that F lies between F and F + dF at x. We have 

P 

since the domain of F is 0 < F < 1. Since the frozen flow and equilibrium flow limits 



where 

and f ’  is the r.m.s. fluctuation of F .  The first terms in ( M a )  and (18b) are PA@‘) and 
PB(F) respectively. The integral J1 is non-negative and an upper bound on it can be 
derived by noting that for any fluctuating variable Q ,  Q < (p)i and setting Q = 
IF-FJ. This yields 

0 < 4 < ~[ {1+(P-Fs)2 / f ’* } t - IP-Fs~ / f ’ ] .  ( 1 9 4  
This upper bound has a maximum of 0.5 at  F’ = F,. Bilger (1980) shows values of J1 
for a variety of p.d.f. forms and Mudford & Bilger (1985) give an empirical 
correlation, 

(19b) 
It should be noted that the only assumption behind the constraint of (19a) is that 
of equal species diffusivities and it will apply no matter what is the structure of the 
turbulence. For all degrees of reactedness of the mixture we have from (8) that 

(20) 

J1 x 0.45 exp { - IF’-FsI/ f ’}. 

-j= -jT-jT-iT-iF-(r 
A B -  A B -  A B -  A l + r B 2 ) F - r B z *  

Denoting fluctuations from the mean by y A  and y B ,  and their r.m.s. fluctuation by 
y l  and yb, we have 

Y Z / L 1  = Y W B Z  = f’, (21) 
70s = - rAl rBzf‘2, (22) 

010 = 7; y ; / ( r ;  r;) = -jy/i”(i -PI (23) 
and R;B y! y ; / (y$yg)  = - I. (24) 

- -- 
so that 

For the equilibrium flow limit 



Reaction in a scalar mixing layer 217 

For all Damkohler numbers we have the constraint 

-m < !%YA-YB)2 = i ( r A l + r B 2 ) 2 f  ' 2 *  (28) 

The mean reaction rate, a, here normalized by the chemical timescale, is defined 

- -aA rArB 
W =  =- 

"Al rB2 rAl rB2 

Normalization by the flow timescale as in (4) yields essentially N D Z .  From (17) and 
(22) we have a t  the frozen flow limit 

- 
$0 =P(l-P)-f'2. (30) 

At the equilibrium limit the result from (26) for BD$ is indeterminate. The reaction 
rate is then mixing controlled and may be determined (Bilger 1976a) by substituting 
(13) into ( 1 ) :  

= -~(~~l+~B2)VF~VF[2S(F-Fs)+(F-F,)6'(F-Fs)]. (32) 

Here S(z )  is the Dirac delta function centred at z = 0 with the property that 

1, S ( 4  dz = H ( 4  

and 6 ' ( z )  is the first derivative of 6(z) with respect to z. It is seen that the 
instantaneous reaction rate is confined to  thin sheets at the stoichiometric isopleth 
surfaces given by F ( x ,  t )  = F,. Its value is thus a function of F and VF-VF and this 
may be averaged to yield 

- -  
w; = w; = - ~ ~ ~ ~ ~ . v ~ ) + ~ ~ , ~ ( r ~ ~ + r ~ ~ ) ~ ~ ( ~ , ; ~ ) .  (33) 

Here 

is the conditional expectation of x for F = F,, where 

x = 2 9 V f . V f .  

(34) 

(35) 

Its mean, 2, is the scalar dissipation for the mixture fraction fluctuations and appears 
as such in the balance equation for the mixture fracture variance. The normalized 
mean reaction rate defined according to  (29) becomes a t  the equilibrium limit 

a _  a -  

?_ire= -- 1 MZ, VF * VF p,(F, ; x) 
- (2 U + ~ } I V D F , ( 1 - F . ) '  

with the reaction rate normalized by the flow timescale, ND %, remaining finite. Here 
the gradients in F ,  GP, are non-dimensionalized by M as in (9). This result is only 
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dependent on the equal-diffusivity assumption and involves no modelling. The 
instantaneous scalar dissipation x is difficult to measure and its joint p.d.f. with the 
mixture fraction p ( ,F;x) is needed if xS is to  be evaluated. Some preliminary 
measurements of this joint p.d.f. have been made by Yip & Long (1986) in a jet flow. 
These measurements indicate that the ratio xs /x  is near unity in the centre of the jet 
for all values of F, but departs from unity by a factor of up to about 2 in the 
intermittent regions of the flow. Since not even x is directly measured in the present 
experiments we can estimate 3 from 

XF ?( 

where 

and 8 is the dissipation rate of the turbulence kinetic energy k,. The second factor in 
the definition of a is the ratio of the timescale for dissipation of turbulence kinetic 
energy to that for dissipation of scalar fluctuations. This timescale ratio is dependent 
on the nature of how the scalar fluctuations are introduced into the flow (Warhaft & 
Lumley 1978) but has values of the order of 2. Ma & Warhaft (1986) find a value near 
to 1.6 for the downstream region of scalar mixing layers with a range of initial 
conditions, but with much lower initial spreading rates than the layer reported here. 
Accordingly @ may be estimated from (37) using a value of a equal to the timescale 
ratio determined for the flow. 

The mean scalar dissipation can be determined from the scalar flux measurements. 
The balance equation for the mean mixture fraction is given by 

O.VP+V.(i$)-9V2P = 0 
and its variance by 

(39) 

u.vf2+ 2uf. V P  + V(uf2) - 9Vf2+ = 0. (40) 

Multiplying (39) by (1 - 2P) and subtracting (40) yields the balance equation for the 
fluid mixedness : 

0. V{P( 1 - F )  -p> + v .  {( 1 - 2F) q} - v . (uf") - BV2(F( 1 - P )  -p> 
+ 2 9 V F . V F - x  = 0. (41) 

I n  the present experiments all terms other than the scalar dissipation are measured 
and so X can be determined from this balance. On the centreline of the layer the 
second term dominates so that 

where v is the velocity fluctuation in the transverse y-direction and use has been 
made of the symmetry of $ about y = 0, applicable in an ideal layer. 

Probability density functions for the reactant mole fractions r, and r, may be 
obtained from p,(F) in the limiting cases for frozen flow by using (12) : 
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where 

For the equilibrium flow case we obtain, using (13), 

AO = ryrAl = f;, BO = r;/rBa = f;. (43c, d )  

1 

where Ae E p A / r A l  = PA, Be @ B / r B a  = PB. ( M C ,  d )  

In  this case the p.d.f.8 have Dirac delta functions at  zero concentration with 
strengths corresponding to the total probability of F being less than F, or greater 
than Fs for A and B respectively. 

Values of the turbulent scalar fluxes z q  can be obtained from the joint p.d.f. of the 
mixture fraction and the velocity for the limiting cases of frozen and equilibrium 
flow. Here we shall confine ourselves to consideration of the transverse components 
of these fluxes. For frozen flow the results are trivially 

- - 
vyi = r A l  $9 vy; = - r B a  $. (45a, b)  

For equilibrium flow we have 

- 
V Y ~  = ( r A l + r B 2 ) p  -w r v ( F . - F ) p v p ( v , F ) d d v .  0 (46b) 

Results for other turbulent fluxes may be obtained in a similar fashion. 
It can be noted from (15) that the mean values of rA and rB must lie between the 

frozen flow and equilibrium flow values. This is not a necessary condition for the 
variances, covariances, p.d.f.8 and turbulent scalar fluxes. It is, however, a constraint 
on the mean reaction rate normalized by the chemical timescale, so that 

- - -  
6 0  2 6 6 e .  (47) 

When normalization is by the fluid dynamic timescale the inequalities are around the 
other way. 

Since the spatial and temporal resolution of the scalar measurements is limited it 
is worthwhile to have some other checks on the measurements. Assuming two- 
dimensionality and transforming (39) to ( x ,  (y/S))-coordinates where S(x) is a measure 
of the width of the mixing layer (not to be confused here with the Dirac delta 
function), see figure 1, yields upon multiplying by (1 - 2F) and integrating across the 
layer 

The approximation assumes high Reynolds number and fully developed F-profiles. 
Axial variations in the conserved scalar flux have been neglected. Similar balances 
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for the reactive scalars can be made. Of more direct interest here is the averaged 
balance equation for the reactants, e.g. 

m ? F , + V . ( q , )  =a*, 

where the mean fluxes due to  molecular diffusion are neglected at high Reynolds 
number. I n  the present flow we obtain 

The term in the streamwise turbulent flux is negligible so that normalizing as in (29) 
yields 

3. Experimental facility and instrumentation 
A schematic diagram of the reactive scalar mixing layer experiment is shown in 

figure 2. The working section is made of thin polyethylene film which is quite passive 
to ozone and nitric oxide. The film walls are kept taut by the overpressure provided 
by the fans and the outlet throttle. The doping gases are injected a t  the fan inlets and 
are well mixed in the air streams by three right-angle bends following each fan. Swirl 
and turbulence are reduced by honeycombs and screens a t  the entry to the wide- 
angle diffusers, screens a t  their exit and the two-to-one contraction upstream of the 
turbulence grid. The two flows are kept separate by a splitter plate until the 
turbulence grid is reached. The turbulence grid is made from 63 x 63 mm hollow 
square-section aluminium on a M = 320 mm square pitch giving an open area of 
65%. The working section is 8 mm long with a diameter of 2.8 m and is equipped 
with a mechanism enabling accurate two-dimensional traversing of the measurement 
probes. Flow velocities used varied from u = 0.254.55 m s-l, giving a Reynolds 
number Re = frM/v = 5300 to 11 700, with v the kinematic viscosity. 

The doping gases used are nitric oxide and ozone which have diffusion coefficients 
in air a t  25 "C, 1 atm of 0.18 and 0.22 cm2 s-', respectively. These are sufficiently 
close so that little differential diffusion will be expected and the results for the 
conserved scalar theory can be expected to be valid. In  the absence of significant 
ultra violet radiation to drive the back reaction, they undergo the irreversible 
reaction 

NO + 0, -+ NO, + 0, + 200 kJ/mol 

with a rate constant k at 20 "C of 0.37 p.p.m.-l s-l (Chameides & Stedman 1977) 
which increases by 1 YO for each 1 "C of temperature rise. The concentrations used 
were in the range 0.5-6 p.p.m. so that the maximum temperature rise for the reaction 
was less than 0.05 "C. The reactions are thus passive and the mixing characteristics 
should be independent of the concentrations used and whether reaction was 
occurring or not. The Damkohler numbers, (lo), were in the range 0.3-2. 

Measurements of the velocity field are made by using hot-wire anemometers with 
conventional x -wire probes for simultaneous measurements of two velocity 
components. The wires were calibrated over a range of velocities from 0.1 to 
0.8 m s-l. This range was obtained using a TSI 1125 calibrator and the pressure drop 
in the calibration chamber was measured using a MKS Baratron pressure transducer. 
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FIGURE 3. Schematic diagram of the chemiluminescent analyser used for concentration 
measurements. 

The mean velocities in the calibration chamber were inferred from the calibration 
charts plotted as a function of chamber pressure drop. A third-order polynomial fit 
was used for the hot-wire calibration. The wires were calibrated before and after each 
experiment and the calibrations found to agree within f 3 % .  The wires were 
positioned horizontally in the experimental chamber yielding negligible buoyancy 
effects. 

The concentrations of the two reactants were continuously measured using a dual- 
chamber chemiluminescent analyser constructed using the design criteria of 
Steffenson & Stedman (1974). The instrument was designed for fast response and is 
documented in Mudford & Bilger (1983). A simplified diagram is shown in figure 3. 
Nitric oxide is measured by mixing half of the sample with a high excess of ozone and 
ozone is measured by mixing with a high excess of NO. The reaction between nitric 
oxide and ozone yields nitrogen dioxide in an excited state and this decays 
chemiluminescently. The chemiluminescent decay is in competition with collisional 
deactivation and so is favoured by low pressures. I n  these experiments the response 
of the analyzer has been improved beyond that of Mudford & Bilger (1983) by 
increasing the pump speed and the flow rates of the reactants in excess, and 
decreasing the sample flow rate. The reaction cells operated with a pressure of 
3.4 kPa, a sample inflow rate for each cell of 80 std om3 s-l and a reactant-in-excess 
flow rate of 220 std cm3 s-l giving a residence time in the cell volume of 62 cm3 of 
about 7 ms and a - 3  dB response of 23 Hz. This response was confirmed by 
correlating the response of the sampling system with that of a cold-wire 
(1.2 pm Pt - 10 Yo Rh) thermometer of frequency response of about 1 kHz. This 
response was measured in the mixing layer of one of the fan outlets with electrical 
heating of the fan inlet air which was also doped with NO and with the fan 
exhausting into room air. The response corresponds to a sampled volume of the 
chamber flow of 1.1 cm3, that is a spatial resolution of 12 mm. 
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Samples were withdrawn from the flow through 5 m of 6 mm I.D. Teflon tubing 
with a chocked flow orifice at its inlet end. The flow in the tubing leading to the 
chemiluminescent analyser was also choked at  its outlet end giving rise to a pressure 
in the tubing which is estimated as 25 kPa. This estimate gives a transit delay time 
of 220 ms which is close to the delay rD = 240 ms measured by comparison of the 
signals with the cold wire in the tests mentioned above. Some reaction occurs in the 
sampling tube. The value of k,rerD, where k, is now 25 x 0.37/101 = 0.092 ppm-' s-l 
and re is the concentration of the reactant in excess, is always less than 0.1 and the 
small corrections 

dr, = drB = k, r, r B  ?D (51) 

can be added to the data. The effect of this correction is found to be significant for 
the data obtained here. The mixing that occurs in the sample tube is small and 
confined to wavenumbers beyond the range of resolution, i.e. to frequencies greater 
than 23 Hz. This can be concluded from theoretical estimates and from the cross- 
correlation between the cold-wire and sampled concentration data. 

As outlined above, the spatial resolution of the concentration measurements is 
calculated from the analyser response and sample flow rate to be about 12mm. 
Although this is about 6 times the Kolmogorov lengthscale for the flow, spectral 
calculations indicate that better than 97 YO of the variance for the conserved scalars 
should be recovered. Mansour, Bilger 81, Dibble (1989) find that spatial averaging 
effects on reactive scalar variances can be estimated quite well by the methods used 
for non-reactive scalars. For small errors in the variance they also find that there are 
only minor changes in the shape of probability density functions. Errors in the 
covariance can be expected to be of the same order as the errors in the variances. 
Such errors could be significant in determining reaction rates at high Damkohler 
numbers but give uncertainties of only about 8 YO for the results obtained here. 

The x -wire probe was located 18 mm above the concentration sampling point and 
the concentration signal corrected for the sampling time lag ( -  240 ms) when 
making correlations between velocity and concentration. A series of tests showed 
that at 18 mm or greater separation there was no significant effect of the sample 
probe flow field on the measured velocity. The separation distance is nearly a factor 
of 20 down on the integral lengthscales of the turbulence (order M = 320 mm), and 
from measurements made a t  several separation distances and extrapolation to zero 
the correlations of velocity and concentration are expected to be within 10 YO of their 
true value. 

The four signals (two for velocity, two for concentration) were sampled a t  128 Hz 
per channel, digitized by a LSI 11/28 terminal and sent to a VAX 780 computer 
for further processing of the data. The sampling time at each measuring point was 
240 s. 

4. Results 
4.1. The Jlow field 

Details of the flow field are given by Saetran et al. (1989). Transverse variations in 
the mean velocity, 0, are less than 2% outside of the wall boundary layers. Trans- 
verse variations in ,turbulence intensities, u'/o, v'/o, w'/o, are less than 1 %. The 
experiments were confined to the region 12 < x/M < 21 which is well inside the initial 
period (x /M < 100) recognized for the establishment of a classical grid flow and the 
normal stresses were found to be quite anisotropic with u'/v' varying from 1.85 at 
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r,, r,, 
Symbol (p.p.m.) (p.p.m.) 

0 

@I 

0 

€4 

A 

+ 
V 

0 

3.90 

4.08 

0.68 

0.68 

0.76 

0.73 

1.20 

4.3 

3.85 

3.85 

0.70 

0.70 

1.70 

0.67 

3.00 

- 

N D  F, 
1.81 0.49 

1.81 0.49 

0.30 0.51 

0.30 0.51 

0.53 0.69 

0.32 0.48 

1.98 0.71 

- - 

Re, 
11700 

11 700 

11 700 

11 700 

11700 

11700 

5 300 

5 300 

X l M  
16 

21 

16 

21 

21 

16 

21 

21 

8 (m) Comments 

1.4 Reactive, 

1.4 Reactive, 

1.6 Reactive, 

1.65 Reactive, 

1.56 Reactive, 

1.4 Reactive, 

1.30 Reactive, 

1.23 Non-reactive, 

A = NO,B = 0, 

A = NO,B = 0, 

A = N O , B  = 0, 

A = N 0 , B  = 0, 

A = NO, B = 0, 

A = O , , B  = NO 

A = NO, B = 0, 

A = N O  
TABLE 1. Experimental conditions 

Shift in 
y for 

P = 0.5 
(mm) 

0 

0 

- 7  

- 14 

-6 

-5 

-2  

0 

x/M = 12 to 1.67 at x/M = 21 for Re = 11 700. The turbulence kinetic energy, k,, 
varied from 2.37 x m2 s-2 while its dissipation estimated from 
E = - Odk/dx varied from 4.8 x mp s-3 for x/M = 12 to 21 for Re = 
11 700. These dissipation estimates agree quite well with those measured using the 
isotropic turbulence formula (Hinze 1975) 

and Taylor’s hypothesis. 
The above values for k, and E yield integral scales L, = kf/s of 240-260 mm and 

Kolmogorov scales 11 = (v3/s)i of 1.6-2.0 mm. The corresponding turbulence 
Reynolds number Re, = u‘L,/v varies from 970 to 700. An estimate for the Taylor 

to 1.43 x 
to 2.1 x 

8 = 15v(au/ax)2 

microscale 

using Taylor’s hypothesis yielded A = 25 mm at  x/M = 21. 

4.2. Conserved scalars 
Variations in the statistics of the mixture fraction, determined from (8), over a range 
of inlet concentrations, r,, and rBp, give a sensitive test of the conserved scalar 
theory (i.e. the equal diffusivity assumption) and the quality of the measurement 
technique. For a given flow Reynolds number the mixture fraction statistics should 
be independent of the inlet concentrations and hence N,,, Fs and whether the flow is 
reactive or not. Table 1 shows the range of experimental conditions tested. 

Figure 4 shows the mean mixture fraction profiles at x/M = 21 for the conditions 
of table 1.  Data for both Re = 11700 and 5300 are included. The centres of the 
profiles have been shifted such that y = 0 for F = 0.5. Further, the plots have been 
normalized by the experimentally determined value of 6, the width of mixing layer 
obtained as the distance between where the profiles go through F = 0.1 and P = 0.9. 
The profiles do not show a large scatter and also appear to be antisymmetric. The 
profile obtained by LaRue & Libby (1981) in a thermal layer is shown for 
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FIGURE 4. Profiles of mean mixture fraction. Symbols as in table 1 ; 

-, LaRue & Libby (1981). 
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FIGURE 5. Spreading rate (8/M) of the scalar mixing layer as a function of downstream 
distance x / M  from the turbulence grid. Symbols m in table 1.  

comparison. The values of 6 and the shift in y are shown in table 1. It is seen that 
the variations in S at Re = 11 700 are about f 8 YO. The shifts in y are small ( < 0.016) 
and there is no discernible trend with iVD or Fb. The variations of this order in S and 
y can only be attributed to the accuracy of the measurements. Problems with the 
measurements include drift in the analyser calibration factor and drift of the 
unmixed stream concentration, rAl and rB2 over the course of a run. Figure 5 shows 
the variation of 6 with x. There is a considerable scatter for 6 over the present 
measurement range but there appears to be no systematic dependence of S on ND. 
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FIQURE 6. R.m.s. fluctuation of mixture fraction at  x / M  = 21. Symbols as in table 1 ; 
_ _ _ _  , LaRue & Libby (1981); -, Keffer et al. (1977). 

Values of 6/M are higher than found in thermal mixing layers for values of x /M even 
twice those measured here. This must arise from some aspect of the initial conditions 
or the overall width of the flow and must be kept in mind when interpreting the 
present results in the light of the thermal mixing layer results. 

Figure 6 showed data for the r.m.s. fluctuation of the mixture fraction, f ’. Once 
again there appears to be no significant effect ofN, and Fs on the profiles. The profiles 
at the higher Reynolds number show a dip in f’ in the centre of the layer while at 
Re = 5300 the profiles peak on the centreline. The profiles appear to be fairly 
symmetrical, which they should be if the basic flow is homogeneous in the y -  
direction. Apart from the central dip the profiles are generally similar to those 
obtained by Keffer et al. (1977) at x/M = 41 and LaRue & Libby (1981) at x/M = 
30 except that the latter show asymmetry due to the residual temperature 
fluctuations in the heated stream. In all these cases the measurements have been 
made in the initial region x /M < 100 and hence one can expect variations in the f’ 
profiles that depend on Reynolds number and the details of the initial conditions. I t  
is noted that in all cases f’ 6 (F(  1 -F)) i  and the fluid is relatively well mixed. 

Figure 7 shows profiles of skewness, S = 71 f ’3 and kurtosis, K 3 71 f ’4 at x/M = 
21 and 16 for the low and high ND (0.3 and 1.8) of table 1. Compared with the higher- 
x/M results of LaRue & Libby (1981) and Ma & Warhaft (1986) there is general 
similarity except for the kinks in the profiles near y / b  = 0. These kinks are allied to 
the dip in the r.m.s. profile and must arise from some aspect of the initial conditions 
or the overall width of the flow. The results indicate no significant effect of ND or F, 
on the mixing field. 
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FIGURE 7. Skewness, 8, and kurtosis, K ,  of mixture fraction across the layer at x /M = 21 and 
16 for Re = 1 1  700 runs of table 1. 
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FIQURE 8. Distributions of mean reactant concentrations at x / M  = 21, Re = 1 1  700. N ,  = 1.81 : 
A, species A ;  V, species B. ND = 0.30: 0,  species A ;  0,  species B.  The lines show equilibrium 
(----) and frozen ( - - - )  limits as given by equation (18) and (17) respectively. 

It can be concluded that, within the limits of experimental error, a conserved 
scalar determined from reactive scalars shows the same mixing characteristics 
independent of Damkohler number and of the stoichiometry of the reacting streams, 
all scalars being passive to the flow. This is as expected from conserved scalar theory 
on the assumption that small differences in the molecular diffusion coefficients of the 
species will not have a significant effect in turbulent flow. 

4.3. Reacting scalars 
Figure 8 shows the effect of Damkohler number on the mean species concentrations 
at x/M = 21 for Re = 11 700. The equilibrium flow and frozen flow limits given by 
(18) and (17) are shown as determined from the mixture-fraction p.d.f.s obtained at 
the higher Damkohler number. It is seen that the results for finite Damkohler 
number obey the constraint obtained from averaging (15) that the mean 
concentrations lie between the frozen and equilibrium values. Saetran et al. (1989) 
show these results plotted against mean mixture fraction but give the equilibrium 
limit incorrectly; they neglect to include the contribution due to mixture fraction 
fluctuations as given by (18). Figure 8 shows that the ND = 1.81 results are quite 
close to the equilibrium limit a t  x/M = 21. The results for x / M  = 16 (not shown here) 
are also found to be close to the equilibrium limit, but not as close as for the results 
a t  x/M = 21. 

Figure 9 shows the r.m.s. fluctuations in the reactant concentrations compared 
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FIGURE 9. Distributions of scalar fluctuation intensities at x / M  = 21, Re = 11 700. Symbols as in 
figure 8. The full lines show the equilibrium flow values and the broken lines, the frozen flow values 
obtained from (26) and (21) respectively. 

with the values for equilibrium and frozen flow, (25) and (21). Although there is no 
realizability constraint that the finite-Damkohler-number results fall between these 
limiting cases there appears to be a tendency for them to do so. Once again the high- 
Damkohler-number results are quite close to the equilibrium limit. The ND = 0.30 
case shows considerable effects of finite rate chemistry at  x/M = 21 and even more 
at x / M  = 12. 

Figure 10 shows profiles of the normalized reactant covariance for Re = 11 700 at 
x / M  = 16 and 21 for ND = 0.30 and 1.81. It is seen that the data lie between the 
equilibrium and frozen limits, (26) and (22), having a trend with N D  and z / M  which is 
consistent with there being a monotonic trend with overall reactedness. Values of the 
correlation coefficient, R,, = m / y >  y;S, at x/M = 21 may be obtained using the 
data of figure 9. At ND = 0.3 and ND = 1.81 they have values around -0.8 and -0.6 
respectively in the middle of the flow and these lie between the frozen flow value of 
- 1.0, (24) and the equilibrium values, (27), which are around -0.5 in the middle of 
this flow. The segregation coefficient a G m , / F A  FB can be obtained using the data 
of figure 8. It is more sensitive to N,,, with values in the centre of the flow being 
around -0.6 a t  ND = 1.81 and around -0.2 at ND = 0.30. These values lie between 
the equilibrium limit, (26b), of - 1 and the frozen limit, (23), which is here around 
-0.05 in the middle of this flow. (It should be noted that figure 7 of Saetran et al. 
(1989) is wrongly labelled for the low-ND symbols.) Toor (1969) proposed the closure 
model 
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FIQURE 10. Distributions of reactant concentration covariance normalized with inlet con- 
centrations for both N ,  = 0.30 and = 1.81 and for x f M  = 16 and 21. Symbols as in table 1. The full 
curve gives the equilibrium flow values and the dashed curved the frozen flow value, both for 
XfM = 21. 

and the closure model of Mudford & Bilger (1985) can be shown to be equivalent to 
this. It appears that a closure model which uses an interpolation between the frozen 
and equilibrium correlation limits of 

Figure 11 (a) shows the spectra for the reactant concentration fluctuations for 
ND = 0.3, y/6 = 0. The power spectral density, E y ( $ ) ,  with $ the frequency, has been 
obtained by normalizing by the signal variance. The spectra for both reactants are 
identical down to the cutoff frequency, 60 Hz. They have only a small range in which 
the slope is of the order -g with the upper cutoff being at about 5 Hz, much below 
the Kolmogorov frequency of 280 Hz. The corresponding spectrum for the mixture- 
fraction fluctuation has a - %  power-law region extending to 20 Hz, close to the 
instrument resolution of 23 Hz. The cross-spectral density function between y A  and 
y, has been decomposed into the coherence function and phase (Bendat & Piersol 
1971) and are shown in figure 11 (b ,  c). These show a sudden change from high 
coherence, 180' out of phase a t  $ < 10 Hz, to incoherent random phase for $ > 
10 Hz. The correlation coefficient R,, is -0.82 here and it can be seen that it arises 
almost entirely from $ < 10 Hz. The break at 10 Hz cannot be attributed to 
instrument response or noise. It is likely to be associated with a reactive-diffusive 
balance between spectral transfer from large, low-frequency eddies and chemical 
reaction. Corrsin (1961, 1964) considers this balance for a first-order chemical 
reaction. Reformulation €or second-order reactions does not appear to be straight- 
forward and that outlined in Bilger (1980, p. 104) is not supported by these data. At 

may be an improvement. 
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FIGURE 11.  (a) Spectra for NO and 0, at x / M  = 21, y/S = 0 for Re = 11 700, ND = 0.3, 
with ( b )  associated coherence and (c) phase. 

ND = 1.81 the cross-spectra are similar with the break in coherence occurring at  
about the same frequency but being less sudden. 

Figure 12 shows probability density functions for the reactants for high and low 
Damkohler number at various positions across the layer at z / M  = 21 for Re = 11 700. 
Also shown are the p.d.f.s for the mixture fraction deduced from the same data. 
Equilibrium and frozen flow p.d.f.s can be deduced from the mixture-fraction p.d.f 
using the transformations of (43) and (44) and p.d.f.s for these are also shown. The 
arrows on the ordinate at  x = 0 denote the Dirac delta functions. It is seen in figure 
12(a, b)  that on the centreline of the flow the p.d.f.s are close to the equilibrium 
p.d.f.s at the high Damkohler number, allowance being made for the smearing of the 
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FIGURE 12. Probability density function of mixture fraction (-) and reactants A (----) and B 
(---) a t  x / M  = 21. (a )  y/S = 0,  ND = 0.3; ( b )  y/S = -0.04, N ,  = 1.81 ; (c) y/S = -0.36, N ,  = 
0.3; ( d )  y/S = -0.37, N,  = 1.81 ; (e) y/S = 0.43, ND = 0.3; (1) y/S = 0.45, N ,  = 1.81. Also shown 
are frozen and equilibrium flow p.d.f.5 derived from (43) and (44). 



Reaction in a scalar mixing layer 233 

delta functions by noise. At the low Damkohler number the shape of the p.d.f. is like 
that for the frozen flow limit but shifted downward about 0.3 in pi. Away from the 
centreline the p.d.f.s for the deficient reactant are seen in figure 12(c-j) to be near 
to those for equilibrium flow at both the high and low Damkohler number, allowing 
once again for smearing of the delta function by noise. For these cases the mixture 
fraction is typically 0.8 or 0.2 so that the deficient reactant has a time constant of 
(O.6krAJ1 or (0.6WBz)-l, the excess of the other reactant being 0.6 of its free-stream 
value. At the low Damkohler number this time constant is about 7 s and the 
convection time from the grid is only 12.2 s a t  x/M = 21. Thus it is seen that the fluid 
in the outer parts of the scalar layer can almost never have resulted from a recent 
mixing event between unmixed stream 1 and stream 2 fluids. The high reactedness 
in this part of the layer suggests that  mixing there occurs between parcels of already 
mixed fluid or of mixed fluid and unmixed fluid from the neighbouring free stream. 
This is consistent with the width of the layer being much larger than the integral 
scale of the turbulence. As noted already S/M - 4 and LJM - 0.8 so that 6 - 5L, and 
mixing between neighbouring fluid parcels would be expected. 

Joint p.d.f.s of the reactants are shown in figure 13 for y/S = 0, x/M = 21, Re = 
11 700 and low and high Damkohler numbers. At the edges of the layer the joint 
p.d.f.s are essentially given by the single variate p.d.f.s of figure 12 ( c - j )  since they 
show no variation from zero in the deficient reactant. Joint p.d.f.s plotted in the form 
of figure 13 are confined to  the half of the square near the region. At the frozen flow 
limit the p.d.f. is constrained to  lie on the diagonal TB = 1 -FA. At the equilibrium 
flow limit i t  is confined to lying on the unit intervals along the axes. It is seen that 
even a t  the low Damkohler number the p.d.f. lies nearer the equilibrium flow limit. 
For N,, = 1.81 i t  is very near this limit. From (8) we have 

p - l - F , -  F 
rA+l-- 

FS 
B-- FS (54) 

so that lines of constant mixture fraction have slope (1 - Fs)/Fs on these diagrams, or 
0.98 for the low-Damkohler-number case. Such a line through the origin corresponds 
to stoichiometric mixtures. It is seen that stoichiometric mixtures are the least fully 
reacted. 

On figure 13(a) we have plotted the compositions &,* corresponding to 
instantaneous mixing to the local mixture fraction and then reaction for the time 
corresponding to convection from the grid a t  the mean velocity 8. These 
concentrations are given by the following formulae : 

For F < F, or F > F,: 

(55a) 
f i =  F(FS - P )  

F,( 1 - P )  exp { (F’ - F )  ND x/M) -F(  1 - Fs) ’ 
@ = (Fs-F)/Fs+(l-Ps)&/Fs.  

For F = F,: 
f i =  FS 

1 +Ps( 1 - Fs) ND x/M ’ 

1 -F, 
1 + F,(l -F, )NDx/M’ 

@ =  

One might expect the resulting @ versus fi  relationship to  give the maximum 
reactedness for the fluid. Figure 13(a) indicates that i t  is more like the median 
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FIGURE 13. Joint probability density function of the concentrations of the two reactants a t  
x/M = 21, y/S % 0, Re = 11 700. (a) N ,  = 0.30; ( b )  N, = 1.81 ; ----, normalized instantaneous 
mixing contour derived from (55). 



Reaction in a scalar mixing layer 235 

- 
- vf 

0.010 I I I I 

1 0.008 

0.006 

0.004 

0.002 

0 
-1.0 -0.5 0 0.5 1 .o 

Y I B  
FIGURE 14. Profiles of cross-stream turbulent fluxes at xlM = 21 for Re = 11 700. ND = 1.81 : A, 
species A ; V, species B ;  0,  mixture fraction. ND = 0.3: x , species A ;  + , species B ;  8, mixture 
fraction. 

reactedness. For the high Damkohler number the @ ve_rsus fi  curv? is not shown 
as it lies very close to the axes with coordinates = 0.047, e = 0.049 for 
stoichiometric mixtures. Once again the curve is not a complete envelope 
for the fluid. It is evident from figure 5 that the layer spreads rapidly a t  first and 
more slowly later so that most of the entrainment occurs at low x / M .  The 
instantaneous mixing model may not be the most efficient for reacting the fluid. 
Furthermore, convective times will show a statistical distribution around the mean 
value x /O.  On these grounds we may accept the data as credible. This result 
indicates, however, that for this experiment mean reaction rates are balanced mostly 
by advection with a timescale for mean flow from the grid, x/O,  rather than mixing 
with a molecular mixing timescale x-' or k t / c  This latter timescale may be more 
important in shear flows where local entrainment is much stronger. 

4.4. Turbulent fluxes 
Figure 14 shows profiles of turbulent fluxes for the reactants and the mixture fraction 
obtained from correlations of the hot-wire w-component measurements and the 
concentration measurements. The equilibrium flow values of the reactant fluxes are 
those deduced from (46). The mixture fraction fluxes are also those for the reactants 
under frozen flow conditions, see (45). It is found that the high-Damkohler-number 
results are very close to those for equilibrium flow (not shown) while those for the low 
Damkohler number are nearer to the frozen flow case. This is consistent with the 

us. 
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FIQURE 15. Profiles of normalized turbulent diffusivity at x /M = 16 and 21 with N ,  = 1.81 and 0.3 
for Re = 11700. Symbols as in table 1. (a) Diffusivity deduced from (56); (b ,  c) deduced for the 
reactants. 

earlier observation that the deficient species concentrations are always close to zero 
away from the middle of the layer. Use of (48) and the measured mixture-fraction 
flux yields d&/dx = 0.026 and this is about half the value that is indicated in figure 5 ,  
although there is a large scatter in the data. 

Since the scalar mixing layer width is larger than the integral scale of the 
turbulence it can be expected (Corrsin 1974) that  the turbulent flux of the conserved 
scalar will fit the gradient model quite well. Figure 15(a) shows the normalized 
turbulent diffusivity deduced from 

4t,f = -vf/{imaF/ay). (56) 
It is seen to be fairly uniform in the centre of the layer, indicating that gradient 
modelling works well there. It also appears to be independent of the Damkohler 



Reaction in a scalar mixing layer 237 

I .o 

0.8 

0.6 
F 

0.4 

0.2 

0 
- 0.2 0 0 0 0 0 0.2 

FIQURE 16. Joint probability density functions of cross-stream velocity component and mixture 
fraction a t  x / M  = 21 for Re = 11 700. (a) y/S = -0.46, ( b )  -0.21, (c) 0.04, ( d )  0.21, (e) 0.5. Data 
from measurements with N ,  = 1.81. 
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FIQURE 17. Joint probability density function of cross-stream velocity and reactive scalar 
concentrations at y/6 x 0. (u, b)  N ,  = 0.3; (c, d )  N ,  = 1.81; (a, c) species A ;  (b, d )  species B. 

number, which is as expected from conserved scalar theory. Using the values of k, 
and E reported in $4.1 in the usual model for the eddy viscosity (Jones & Launder 
1972) 

vt = 0.09k,2/e, 
the turbulent Schmidt number crtf = vt/gt, is found to be about 0.35. This is slightly 
lower than the value of about 0.5 used for planar flows (Launder 1976). 

Figure 15(b, c) shows the turbulent diffusivities deduced for the reactants. It is 
seen that they are substantially higher than those for the mixture fraction on the side 
of the layer from which the reactant comes but are much lower on the other side. In 
this latter region the diffusivities also show a dependence on N,, with values for high 
ND being smaller than those for low N,,. No evidence of counter-gradient diffusion is 
found, however. 
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FIGURE 18. Normalized mean reaction rate profiles at x / M  = 21 and Re = 1 1 700 ; 0,  N,, = 0.3 ; @ , 
ND = 1.81 ; ---, equilibrium flow limit (37); -, product means closure; ----, Toor closure. 

Figure 16 shows $he joint probability density function for mixture fraction and 
cross-stream velocity component at several positions across the layer. I n  the centre 
of the layer the distribution is close to jointly Gaussian with a negative correlation 
coefficient. The line 

on such a joint p.d.f. is the equation of conditional means and closely follows the 
ridge line of the contours. In  the centre of the layer the correlation coefficient is 
-0.52 and ( f  'g/v')&,f = -0.99. As we approach the A-stream side of the layer the 
p.d.f. of v &B @ whole remains Gaussian and p.d.f.s of v conditional on a given value 
of F also appe4r to  remain Gaussian. The p.d.f. of F as a whole becomes highly 
skewed and evepbually has a large intermittency spike associated with pure stream- 
A fluid. The ridge line of the contours remains with a negative slope (f 'B/v')R, 
being -0.6 a t  g/& = Q.45 where R,, = -0.28. 

Figure 17 shows the joint p.d.f. of cross-stream velocity and reactant species 
concentration on the centreline for low and high Damkohler numbers. I n  the limit of 
fast chemistry, that  is equilibrium flow, the joint p.d.f. for species A and v would be 
obtainable by applying the transformation of (13a) to figure 16. The part of the 
joint p.d.f. of F and v which has F less than F, is collapsed to the r, = 0 axis while 
that part which has F greater than F, is stretched out and maps into the r, > 0 
domain. There is a similar result for species B except that now it  is the part of the 
joint p.d.f. with F 2 Fs which collapses on to the r, = 0 axis and the part with F < 
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F, is flipped up (by reflection about F = F,) and stretched out into the r, > 0 domain. 
Figure 17 (c ,  d ) very closely resembles this in relationship to figure 16 (a) : species A 
and B are close to fast chemistry at  ND = 1.81 as already noted. It is thus seen that 
in the equilibrium flow limit the reactant-species correlations with v are determined 
largely by the mixture-fraction correlations. If the mixture fraction has a negative 
correlation and hence down-gradient flux and the ridge line on its joint p.d.f. plot is 
more or less straight then it will yield down-gradient fluxes for the reactants a t  the 
fast chemistry limit. A counter-gradient flux, of course, would be found for the 
reactants if the mixture fraction itself was counter gradient. For a down-the-gradient 
flux in mixture fraction, counter-gradient fluxes for the reactants could be found 
when the ridge line of the joint F,v p.d.f. is curved. If it is crescent shaped one 
reactant species would have its down-gradient flux enhanced and the other could 
become counter gradient. If it is S shaped then both reactants could become counter 
gradient in their fluxes. Inspection of figure l 6 ( M )  indicates that there is some 
tendency of the joint p.d.f. of F and v to become S shaped in its ridge line. This may 
explain the decreased turbulent diffusivity for the deficient species. 

For finite Damkohler numbers the mapping from the joint p.d.f. of F and v to that 
o f f $  and v is not direct. The joint p.d.f. of r, and F lies in the domain allowed by 
(12), (13) and (15). From figure 13 it can be seen that the joint p.d.f. of f, and F will 
be confined to a narrow region around a basic fi versus F relationship. It would need 
a strong correlation between departures from this relationship and v to change a 
down-the-gradient v, f correlation into a counter-gradient one. Thus positive values 
of v are associated in general with low values of F but they would need to be 
associated with more-reacted-than-average species concentrations at these values of 
F for the flux to become counter gradient. There is little evidence of this in figure 
17 (a ,  b ) .  They appear close to being a direct mapping from figure 16 ( a )  with a simple 
ft versus F relationship. 

4.5. Mean reaction rates 
Figure 18 shows the values of the mean reaction rate calculated from the measured 
concentrations and normalized in the manner of (29). They are for x/M = 21 and 
Re = 11 700. The results for ND = 1.81 at high y/6 do not tend to zero as they should. 
This is due to a problem with drift in the zero calibration for species B (ozone) of 
about 0.5 % of its stream-B concentration which has not been corrected. 

Using (50) and the fluxes shown in figure 14 it is found that on the centreline the 
divergence of the turbulent flux balances only about 15 % of the mean reaction rate 
at ND = 0.3, rising to 30% at ND = 1.81. It appears that_mean convection dominates. 
The data are not precise enough for accurate values of W,/a(z/M) to be obtained but 
the values required to balance (50), 6 x at ND = 0.3 and 4 x lo-' at ND = 1.81, 
are within the limits of measurement error. 

Also shown in this figure is the fast chemistry limit to the reaction rate calculated 
from (37) with a = 1.0 which is the value of the ratio at the timescale of kinetic 
energy dissipation to that for scalar dissipation evaluated for the centreline using 
(42) and the values of E and k, reported in 54.1. Equation (42) yields MXcL/O x 
1 x lo-'. This value of timescale ratio is lower than the 1.6 found by Ma & Warhaft 
(1986) at high x / M  for this flow and the generally accepted value used in modelling 
of about 2 ; but it is within the range found experimentally for more complex flows. 
In the present case the momentum differences and scalar differences, giving rise to 
the velocity and scalar fluctuations, are initially at very different scales unlike 
boundary layers, jets and grid turbulence with quasi-homogeneous scalar properties. 
A value of unity for the timescale ratio is thus quite credible. 
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For the frozen flow case the normalized reaction rate is given by (30) which has a 
value of 0.24 in the middle of the layer. This limit is not plotted in figure 18 since i t  
is off the scale in most of the range of y/6. It is seen that near the centreline the 
measured data comply with the constraint, (47), that the reaction rate lies between 
the equilibrium and frozen flow limits. If a is taken as 2 in evaluating the equilibrium 
limit from (37) this constraint would be violated. It is seen that lower values of a are 
required near the edge of the layer, probably due to the rate of conditional to 
unconditional expectation of x. 

Also shown in figure 18 are the predictions of two commonly used closure 
assumptions. The product of means closure neglects the Gontribution of the 
covariance YAYB so that the normalized reaction rate is simply r, r,. It is seen that 
this simplistic closure overestimates the reaction rate quite significantly particularly 
a t  the high Damkohler number, where it is too high by a factor of 2.5 on the 
centreline. The closure of Toor (1969) sets the covariance - equal to its 
equilibrium value 7 : ~ :  as evaluated in (26) and shown in figure 10. The closure of 
Mudford & Bilger (1985) can be shown to be equivalent to this. Although the Toor 
closure gives the correct limit for at high N,, it does not necessarily give the 
correct limit for NDG.  Mudford & Bilger (1985) define and evaluate the errors 
involved in this closure for a flow with an opposed jet configuration. They find no 
clear trend with ND. Figure 18 indicates that the Toor closure overestimates the 
reaction rates, but the accuracy of the results is not sufficient for this to be stated 
with certainty or any trend with ND to be asserted. 

5. Conclusions 
It is concluded that, in spite of the limitations resulting from the experimental 

compromises (low x / M ,  low number of meshes across the flow, moderate resolution 
of the scalar measurements) the results for the conserved scalar are generally similar 
to those measured more accurately in much more ideal scalar mixing layers. Caution 
should be exercised, however, in interpreting the conserved and reactive scalar 
results in terms of such an ideal scalar mixing layer owing to the small but perhaps 
significant effects of these limitations. 

Furthermore, i t  is concluded that, within the limits of experimental error, 
conserved scalar theory is valid in this flow. The scalars are passive with respect to 
the flow, and statistics of the conserved scalar, here reported as a mixture fraction, 
are independent of the Damkohler number of the flow and of the relative 
concentrations in the two streams, including cases of no reaction. The effects of small 
differences in the diffusivities of the species are thus apparently not significant. 

It is also found that the equilibrium and frozen flow statistics for the reactive 
scalars, definable by conserved scalar theory in terms of the statistics of the mixture 
fraction, tend to be limiting values for the finite Damkohler number statistics of the 
reactive scalars even when they are not theoretically required to be so. This result for 
the covariance as depicted in figure 10 is particularly interesting and could 
result in improvements to Toor’s closure for the mean reaction rate by interpolation 
between the frozen equilibrium limits. Evaluation in more complex flows is 
warranted. It appears that the mixing-controlled limit to the reaction rate 
deduced from the conserved scalar theory, (36), may give good estimates a t  high 
Damkohler number provided that uncertainties in the modelling of scalar dissipation 
and its conditional expectation can be clarified. 

Gradient modelling of the turbulent flux of the conserved scalar works quite well 
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in this flow with a turbulert Schmidt number of 0.35 and the eddy viscosity 
determined from measured values of the turbulence kinetic energy and its dissipation. 
This is as may be expected sirce the scalar layer is much wider than the integral 
lengthscale of the velocity field For the reactive scalars it is found that the effective 
turbulent Schmidt numbers are nuch lower than this on the side of the layer in which 
the species is deficient. On its own side the turbulent Schmidt numbers for the 
reactive scalars are substantially higher than for the conserved scalar. No counter- 
gradient fluxes were found, althciugh the reductions in turbulent Schmidt number 
indicate a tendency in that direction. 

The results indicate that the roactant concentrations are not bounded by the 
concentrations that would be obtained if mixing occurred instantaneously at the 
turbulence grid to the downstream measured value of the mixture fraction, with 
subsequent reaction for the time of convection by the mean velocity. It is probable 
that this is consistent with the early rapid mixing of the layer and the statistical 
fluctuations in the convection time. 

Generally it is concluded that conserved scalar theory is an excellent basis upon 
which to gain insight into reacting turbulent flows with non-premixed reactants. 
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